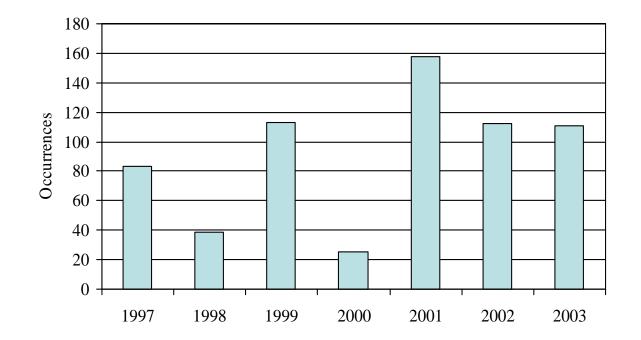
GURME Workshop, IITM Pune, 8-12 December 2008

Ozone & Agriculture

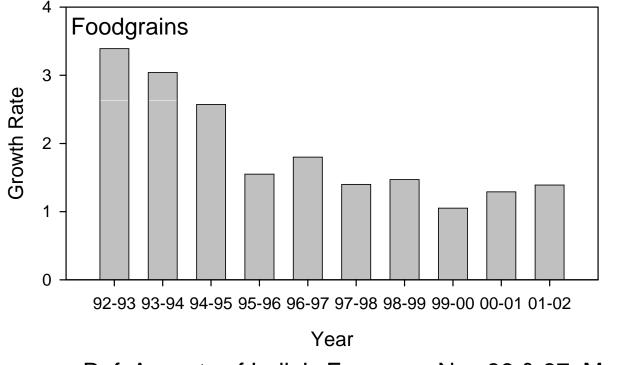
Will at 1

Chhemendra Sharma Radio & Atmospheric Science Division National Physical Laboratory New Delhi-110012, India csharma@mail.nplindia.ernet.in

Impacts of Ozone on Plants


- Tropospheric ozone is an oxidant that damages agriculture, ecosystems, and materials.
- Ozone destroy rubisco, an enzyme crucial for photosynthesis.
- O3 effects on vegetation occur when stomatal gas exchange is active.
- It is also known to make leaves age faster.

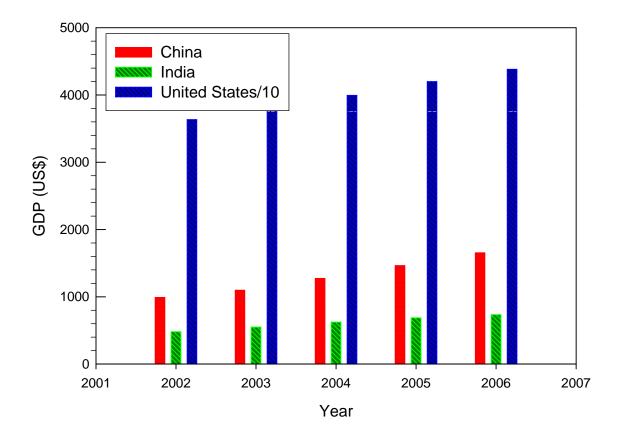
Leaf Injuries due to Surface Ozone



High Surface Ozone Occurrences at Delhi

Ref: Jain et al. International Journal of Remote Sensing, 2005

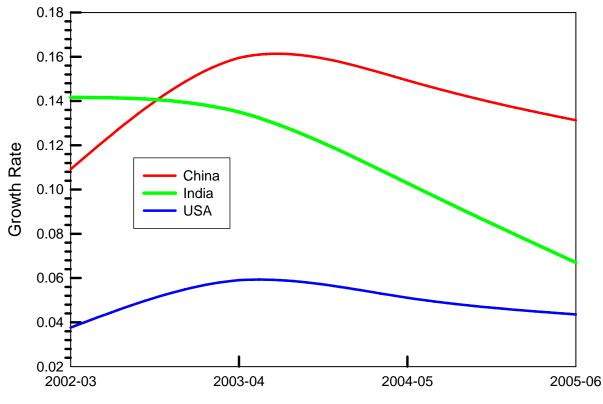
Loss in Food Grain Productivity



Ref: Aspects of India's Economy, Nos 36 & 37, March 2004

The fact that yields growth is below population growth (1.9 % per year) means that food grain production per capita is falling and will involve economic risks.

Productivity Levels


Gross Domestic Product per Capita, current prices

Ref: World Economic Outlook Database -IMF

Growth Rate of Productivity

RATE OF PRODUCTIVITY GROWTH

Year

PRODUCTION, ECONOMIC VALUE AND % LOSS IN ECONOMIC VALUE OF YIELD AT DIFFERENT SITES AROUND VARANASI CITY

Sites/Plants	Production (q ha ⁻¹)	Economic value (Rs.)	%loss
Wheat	(чпа)	(185.)	
Reference area	29.50	17995.0	
Rural area	24.25	14792.5	17.80
Periurban area	22.15	13511.5	24.91
Urban area	20.60	12566.0	30.17
Industrial and	20.50	12505.0	30.50
Urban area			
Mung			
Reference area	10.11	13244.0	
Rural area	7.20	9432.0	28.78
Periurban area	6.66	8724.6	34.12
Urban area	5.85	7663.0	42.14
Industrial and	6.00	7860.0	40.65
Urban area			
Pea			
Reference area	23.50	30550.0	
Rural area	17.75	23075.0	24.47
Periurban area	16.57	21541.0	29.49
Urban area	15.92	20702.5	32.23
Industrial and	14.62	19012.5	37.76
Urban area			

Source: M. Agrawal, BHU

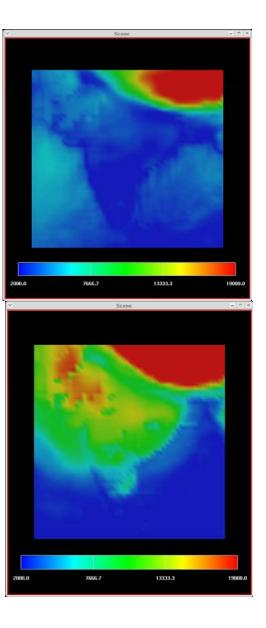
Ambient air pollution effects on selected crops of Pakistan (Wahid, 2003)

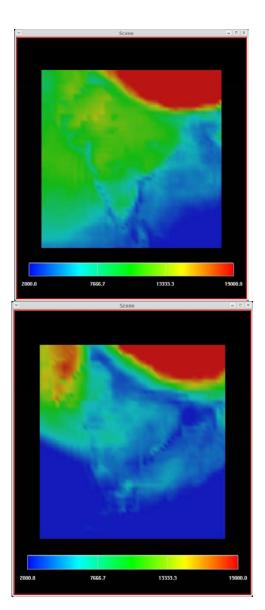
Crops	Polluta	nt (ppb)	Yield losses (%)
-	O ₃ *	NO ₂ **	
Wheat (6 varieties)	33- 85	23-30	29- 47
Rice (5 varieties)	35- 60	13-25	28-42
Soybean (2 varieties)	64	29	37-46
Chickpea (3 varieties)	59	38	23-27
Mung bean (2 varieties)	66	31	26-34

* O₃ (6 h d⁻¹ seasonal mean)

** NO₂ seasonal mean (weekly basis)

Ambient air pollution effects on crops in selected countries of Asia


Country	Pollutant	Сгор	Yield loss	References
Japan (Kantoh)	O ₃ (40-60 ppb)	Rice	0- 7%	Kobayashi (1999)
China	SO ₂ and	Vegetables	7.8 %	Feng et al.(1999)
(7 provinces)	acid rain	Wheat	5.41 %	
(south west)		Soybean	5.73 %	
		Cotton	4.99 %	
	O ₃ (ppb)	Green	Sensitive	Zheng et al. (1998)
	(night 15	pepper	**	
	mid day	Rice	**	
	max 75)	Cauliflower Aubergine		
Taiwan (S)	O ₃	Spinach	••	Sun (1993)
Taipei Basin	-	Sweat potato	••	
China, Japan	O ₃	Corn		
and South	50- 55 ppb	Rice	1-9%	Wang and
Korea	(1990)	Wheat		Mauzerall, 2004)*
		Soybean	23-27 %	
		Corn		
		Rice	2-16 %	
	60- 65 ppb	Wheat		
	(2020)	Soybean	28-35 %	


* MOZART- 3 O₃ exposure and yield relationship

AOT-40 Over Indian Region

February 2000

April 2000

March 2000

May 2000

Source: Mittal, Sharma & Pandey 2007

Estimated Potential Yield Losses in India

Сгор	% loss	2000	2001	2002	2003	2004
	in yield	Losses	Losses	Losses	Losses	Losses
		(MT)	(MT)	(MT)	(MT)	(MT)
Wheat	10%	7.6.37	6.97	7.28	6.51	72.06
Rice	12%	10.76	10.2	11.2	8.72	10.44
Maize	5%	0.58	0.60	0.66	0.52	0.74
Soybean	15%	1.06	0.79	0.89	0.68	1.18
Cotton	11%	0.23	0.18	0.19	0.17	0.26
Sugarcane	5%	14.97	14.8	14.86	14.08	11.81

Source: Mittal, Sharma & Pandey 2007

Managing Pollutants

- Ozone and other pollutant concentrations are rising
- Government response limited to *adhoc* mitigation for emission reduction
- Policy challenge lies in identifying appropriate adaptation options for avoiding and/or minimizing adverse impacts

What Do We Do?

- Learn to live with these levels of ozone and other pollutants – Adaptation Policies
- Minimize emissions of pollutants and precursors – Mitigation policies

Adaptation Options

- Technological developments (e.g., new crop varieties, water management innovations etc.)
- Government program and insurance
- Farm production practices (e.g., crop diversification, irrigation).
- Farm financial management (e.g., crop shares, income stabilization programs).
- Other measures (For example, reduce the emissions of precursors, and or change the time they are emitted to miss the peak sunshine and heat).

Adaptation Strategies

- Assess feasibility and economic practicality of adaptation options
- Examine the capacity of producers to undertake adaptation
- Study the affordability of adaptive measures, access to technology, and other constraints

Mitigation Policies/Activities

- Characterize the economic losses from current (and projected) levels of air pollution
- Suggest market-based approaches and technological changes
- Emphasize the long term benefits of the mitigation policies

Thanks